Algorithms for NLP

Machine Translation II

Yulia Tsvetkov – CMU

Slides: Philipp Koehn – JHU; Chris Dyer – DeepMind

MT is Hard

Ambiguities

- words
- morphology
- syntax
- semantics
- pragmatics

Levels of Transfer

Two Views of Statistical MT

- Direct modeling (aka pattern matching)
 - I have really good learning algorithms and a bunch of example inputs (source language sentences) and outputs (target language translations)

- Code breaking (aka the noisy channel, Bayes rule)
 - I know the target language
 - I have example translations texts (example enciphered data)

MT as Direct Modeling

- one model does everything
- trained to reproduce a corpus of translations

Noisy Channel Model

$$\hat{m{e}} = rg \max_{m{e}} p_{m{\varphi}}(m{e}) imes p_{m{\theta}}(m{f} \mid m{e})$$
 language model translation model

Cov

Which is better?

- Noisy channel $p_{\boldsymbol{\theta}}(\boldsymbol{e}) \times p_{\boldsymbol{\varphi}}(\boldsymbol{f} \mid \boldsymbol{e})$
 - easy to use monolingual target language data
 - search happens under a product of two models (individual models can be simple, product can be powerful)
 - obtaining probabilities requires renormalizing
- Direct model $p_{\lambda}(e \mid f)$
 - directly model the process you care about
 - model must be very powerful

Centauri-Arcturan Parallel Text

1a. ok-voon ororok sprok .	7a. lalok farok ororok lalok sprok izok enemok .

1b. at-voon bichat dat . 7b. wat jjat bichat wat dat vat eneat .

2a. ok-drubel ok-voon anok plok sprok . 8a. lalok brok anok plok nok .

2b. at-drubel at-voon pippat rrat dat . 8b. iat lat pippat rrat nnat .

3a. erok sprok izok hihok ghirok . 9a. wiwok nok izok kantok ok-yurp .

3b. totat dat arrat vat hilat . 9b. totat nnat quat oloat at-yurp .

4a. ok-voon anok drok brok jok . 10a. lalok mok nok yorok ghirok clok .

4b. at-voon krat pippat sat lat . 10b. wat nnat gat mat bat hilat .

5a. wiwok farok izok stok . 11a. lalok nok crrrok hihok yorok zanzanok .

5b. totat jjat quat cat . 11b. wat nnat arrat mat zanzanat .

6a. lalok sprok izok jok stok . 12a. lalok rarok nok izok hihok mok .

6b. wat dat krat quat cat . 12b. wat nnat forat arrat vat gat .

Translation challenge: farok crrrok hihok yorok clok kantok ok-yurp

(from Knight (1997): Automating Knowledge Acquisition for Machine Translation)

Noisy Channel Model: Phrase-Based MT

Translation Model P(f|e)

Language Model P(e)

Reranking Model

feature weights

 $argmax_e P(f|e)P(e)$

Phrase-Based MT

Phrase-Based Translation

в этом	смысле	подобные	действия	частично	дискредитируют	систему	американской	демократии
in this	sense	such	actions	some	discredit	system	american	democracy
the that	meaning	similar	action	partially		a system	u.s.	democracies
a the	terms	these	the	part		systems	us	democratic
at it	way	this	acts	in part		which	america	of democracy
here	sense,	like	steps	partly		network	america's	
this these actions					american de	mocracy		
in this sense						america's democracy		
in that sense							us demo	ocracy
in this	respect							

Phrase-Based System Overview

Sentence-aligned corpus

Word alignments

cat ||| chat ||| 0.9

language ||| langue ||| 0.9

...

Phrase table (translation model)

Lexical Translation

How do we translate a word? Look it up in the dictionary
 Haus — house, building, home, household, shell

- Multiple translations
 - some more frequent than others
 - different word senses, different registers, different inflections (?)
 - house, home are common
- shell is specialized (the Haus of a snail is a shell)

How common is each?

Look at a parallel corpus (German text along with English translation)

Translation of Haus	Count
house	8,000
building	1,600
home	200
household	150
shell	50

Estimate Translation Probabilities

Maximum likelihood estimation

$$\hat{p}_{\mathrm{MLE}}(e \mid \mathtt{Haus}) = \begin{cases} 0.8 & \text{if } e = \mathtt{house}, \\ 0.16 & \text{if } e = \mathtt{building}, \\ 0.02 & \text{if } e = \mathtt{home}, \\ 0.015 & \text{if } e = \mathtt{household}, \\ 0.005 & \text{if } e = \mathtt{shell}. \end{cases}$$

Lexical Translation

- Goal: a model $p(\mathbf{e} \mid \mathbf{f}, m)$
- where e and f are complete English and Foreign sentences

Alignment Function

- In a parallel text (or when we translate), we align words in one language with the words in the other
- Alignments are represented as vectors of positions:

$$\mathbf{a} = (1, 2, 3, 4)$$

Alignment Function

- Formalizing alignment with an alignment function
- Mapping an English target word at position i to a German source word at position j with a function $a:i \rightarrow j$

Example

$$\mathbf{a} = (1, 2, 3, 4)$$

Reordering

Words may be reordered during translation.

$$\mathbf{a} = (3, 4, 2, 1)$$

One-to-many Translation

A source word may translate into more than one target word

$$\mathbf{a} = (1, 2, 3, 4, 4)$$

Word Dropping

A source word may not be translated at all

$$\mathbf{a} = (2, 3, 4)$$

Word Insertion

- Words may be inserted during translation
 - English just does not have an equivalent
 - But it must be explained we typically assume every source sentence contains a NULL token

$$\mathbf{a} = (1, 2, 3, 0, 4)$$

Many-to-one Translation

 More than one source word may not translate as a unit in lexical translation

$$\mathbf{a} = ???$$
 $\mathbf{a} = (1, 2, (3, 4))$?

$$p(\mathbf{e} \mid \mathbf{f}, m)$$
?

Mary did not slap the green witch

The IBM Models 1--5 (Brown et al. 93)

[from Al-Onaizan and Knight, 1998]

Alignment Models

- IBM Model 1: lexical translation
- IBM Model 2: alignment model, global monotonicity
- HMM model: local monotonicity
- fastalign: efficient reparametrization of Model 2
- IBM Model 3: fertility
- IBM Model 4: relative alignment model
- IBM Model 5: deficiency
- +many more

P(e,a|f)

P(e, alignment|f) =
$$\prod p_f \prod p_t \prod p_d$$

P(e|f)

IBM Model 1

- Generative model: break up translation process into smaller steps
- Simplest possible lexical translation model
- Additional assumptions
 - All alignment decisions are independent
 - The alignment distribution for each a_i is uniform over all source words and NULL

IBM Model 1

- Translation probability
 - for a foreign sentence **f** = (f₁, ..., f_{lf}) of length l_f
 to an English sentence **e** = (e₁, ..., e_{le}) of length l_e

 - with an alignment of each English word e_i to a foreign word f_i according to the alignment function $a: j \rightarrow i$

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

■ parameter ∈ is a normalization constant

Example

das

e	t(e f)		
the	0.7		
that	0.15		
which	0.075		
who	0.05		
this	0.025		

Haus

e	t(e f)
house	0.8
building	0.16
home	0.02
household	0.015
shell	0.005

ist

t(e f)
0.8
0.16
0.02
0.015
0.005

klein

e	t(e f)		
small	0.4		
little	0.4		
short	0.1		
minor	0.06		
petty	0.04		

$$\begin{split} p(e,a|f) &= \frac{\epsilon}{4^3} \times t(\text{the}|\text{das}) \times t(\text{house}|\text{Haus}) \times t(\text{is}|\text{ist}) \times t(\text{small}|\text{klein}) \\ &= \frac{\epsilon}{4^3} \times 0.7 \times 0.8 \times 0.8 \times 0.4 \\ &= 0.0028\epsilon \end{split}$$

Learning Lexical Translation Models

We would like to estimate the lexical translation probabilities t(e|f) from a parallel corpus

... but we do not have the alignments

- Chicken and egg problem
 - if we had the alignments,
 - → we could estimate the parameters of our generative model

(MLE)

if we had the parameters,

→ we could estimate the alignments

Cov

EM Algorithm

- Incomplete data
 - if we had complete data, would could estimate the model
 - if we had the model, we could fill in the gaps in the data

Expectation Maximization (EM) in a nutshell

- 1. initialize model parameters (e.g. uniform, random)
- 2. assign probabilities to the missing data
- 3. estimate model parameters from completed data
- 4. iterate steps 2–3 until convergence


```
... la maison ... la maison blue ... la fleur ...

the house ... the blue house ... the flower ...
```

- Initial step: all alignments equally likely
- Model learns that, e.g., la is often aligned with the


```
... la maison ... la maison blue ... la fleur ...
the house ... the blue house ... the flower ...
```

- After one iteration
- Alignments, e.g., between la and the are more likely

- After another iteration
- It becomes apparent that alignments, e.g., between fleur and flower are more likely (pigeon hole principle)

- Convergence
- Inherent hidden structure revealed by EM


```
la maison ... la maison bleu ... la fleur ...
the house ... the blue house ... the flower ...
             p(la|the)
                       = 0.453
             p(le|the) = 0.334
          p(maison|house) = 0.876
           p(bleu|blue) = 0.563
```

Parameter estimation from the aligned corpus

EM Algorithm consists of two steps

- Expectation-Step: Apply model to the data
 - parts of the model are hidden (here: alignments)
 - using the model, assign probabilities to possible values
- Maximization-Step: Estimate model from data
 - take assigned values as fact
 - collect counts (weighted by lexical translation probabilities)
 - estimate model from counts
- Iterate these steps until convergence

- We need to be able to compute:
 - Expectation-Step: probability of alignments
 - Maximization-Step: count collection

t-table Probabilities

```
p(\text{the}|\text{la}) = 0.7 p(\text{house}|\text{la}) = 0.05
p(\text{the}|\text{maison}) = 0.1 p(\text{house}|\text{maison}) = 0.8
```


t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

la •• the maison house maison house maison house maison house
$$p(\mathbf{e}, a|\mathbf{f}) = 0.56$$
 $p(\mathbf{e}, a|\mathbf{f}) = 0.035$ $p(\mathbf{e}, a|\mathbf{f}) = 0.08$ $p(\mathbf{e}, a|\mathbf{f}) = 0.005$

Applying the chain rule:
$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

$$p(e, a) = p(e)p(a|e)$$

IBM Model 1 and EM: Expectation Step

We need to compute $p(\mathbf{e}|\mathbf{f})$

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} p(\mathbf{e}, a|\mathbf{f})$$

$$= \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

IBM Model 1 and EM: Expectation Step

$$p(\mathbf{e}|\mathbf{f}) = \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \sum_{a(1)=0}^{l_f} \dots \sum_{a(l_e)=0}^{l_f} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

$$= \frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)$$

- Note the trick in the last line
 - removes the need for an exponential number of products
 - → this makes IBM Model 1 estimation tractable

The Trick

(case
$$l_e = l_f = 2$$
)

$$\begin{split} \sum_{a(1)=0}^{2} \sum_{a(2)=0}^{2} &= \frac{\epsilon}{3^{2}} \prod_{j=1}^{2} t(e_{j}|f_{a(j)}) = \\ &= t(e_{1}|f_{0}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{0}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{1}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{1}) \ t(e_{2}|f_{2}) + \\ &+ t(e_{1}|f_{2}) \ t(e_{2}|f_{0}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{1}) + t(e_{1}|f_{2}) \ t(e_{2}|f_{2}) = \\ &= t(e_{1}|f_{0}) \ (t(e_{2}|f_{0}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{1}) \ (t(e_{2}|f_{1}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) + \\ &+ t(e_{1}|f_{2}) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) = \\ &= (t(e_{1}|f_{0}) + t(e_{1}|f_{1}) + t(e_{1}|f_{2})) \ (t(e_{2}|f_{2}) + t(e_{2}|f_{1}) + t(e_{2}|f_{2})) \end{split}$$

IBM Model 1 and EM: Expectation Step

Combine what we have:

$$\begin{split} p(\mathbf{a}|\mathbf{e},\mathbf{f}) &= p(\mathbf{e},\mathbf{a}|\mathbf{f})/p(\mathbf{e}|\mathbf{f}) \\ &= \frac{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})}{\frac{\epsilon}{(l_f+1)^{l_e}} \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j|f_i)} \\ &= \prod_{j=1}^{l_e} \frac{t(e_j|f_{a(j)})}{\sum_{i=0}^{l_f} t(e_j|f_i)} \end{split}$$

IBM Model 1 and EM: Expectation Step

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

$$p(a|\mathbf{e}, \mathbf{f}) = \frac{p(\mathbf{e}, a|\mathbf{f})}{p(\mathbf{e}|\mathbf{f})}$$

Now we have to collect counts

Evidence from a sentence pair e,f that word e is a translation of word f:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \sum_{a} p(a|\mathbf{e}, \mathbf{f}) \sum_{j=1}^{l_e} \delta(e, e_j) \delta(f, f_{a(j)})$$

With the same simplication as before:

$$c(e|f; \mathbf{e}, \mathbf{f}) = \frac{t(e|f)}{\sum_{i=0}^{l_f} t(e|f_i)} \sum_{j=1}^{l_e} \delta(e, e_j) \sum_{i=0}^{l_f} \delta(f, f_i)$$

t-table Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

Alignments

M-step Counts

$$c({\rm the|la}) = 0.824 + 0.052$$
 $c({\rm house|la}) = 0.052 + 0.007$ $c({\rm the|maison}) = 0.118 + 0.007$ $c({\rm house|maison}) = 0.824 + 0.118$

After collecting these counts over a corpus, we can estimate the model:

$$t(e|f;\mathbf{e},\mathbf{f}) = \frac{\sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}{\sum_{e} \sum_{(\mathbf{e},\mathbf{f})} c(e|f;\mathbf{e},\mathbf{f}))}$$

t-table

Probabilities

$$p(\text{the}|\text{la}) = 0.7$$
 $p(\text{house}|\text{la}) = 0.05$
 $p(\text{the}|\text{maison}) = 0.1$ $p(\text{house}|\text{maison}) = 0.8$

E-step

Alignments

$$p(a|\mathbf{e}, \mathbf{f}) = 0.824$$
 $p(a|\mathbf{e}, \mathbf{f}) = 0.052$ $p(a|\mathbf{e}, \mathbf{f}) = 0.118$ $p(a|\mathbf{e}, \mathbf{f}) = 0.007$

M-step

Counts

$$c(\text{the}|\text{la}) = 0.824 + 0.052$$

 $c(\text{the}|\text{maison}) = 0.118 + 0.007$

$$c({\rm the|la}) = 0.824 + 0.052$$
 $c({\rm house|la}) = 0.052 + 0.007$ $c({\rm the|maison}) = 0.118 + 0.007$ $c({\rm house|maison}) = 0.824 + 0.118$

Update t-table:

$$p(\text{the}|\text{la}) = c(\text{the}|\text{la})/c(\text{la})$$

IBM Model 1 and EM: Pseudocode

```
Input: set of sentence pairs (e, f)
                                                              // collect counts
                                                     14:
Output: translation prob. t(e|f)
                                                              for all words e in e do
                                                     15:
 1: initialize t(e|f) uniformly
                                                                 for all words f in f do
                                                     16:
                                                                    \operatorname{count}(e|f) += \frac{t(e|f)}{\operatorname{s-total}(e)}
 2: while not converged do
                                                     17:
       // initialize
                                                                    total(f) += \frac{t(e|f)}{s-total(e)}
                                                     18:
       count(e|f) = 0 for all e, f
                                                                 end for
                                                     19:
       total(f) = 0 for all f
                                                              end for
                                                     20:
       for all sentence pairs (e,f) do
                                                           end for
                                                     21:
          // compute normalization
                                                           // estimate probabilities
          for all words e in e do
 8:
                                                           for all foreign words f do
                                                     23:
             s-total(e) = 0
 9:
                                                              for all English words e do
                                                     24:
             for all words f in f do
 10:
                                                                 t(e|f) = \frac{\operatorname{count}(e|f)}{\operatorname{total}(f)}
                                                     25:
                s-total(e) += t(e|f)
 11:
                                                              end for
                                                     26:
             end for
 12:
                                                           end for
          end for
 13:
                                                     28: end while
```


Convergence

e	f	initial	1st it.	2nd it.	3rd it.	 final
the	das	0.25	0.5	0.6364	0.7479	 1
book	das	0.25	0.25	0.1818	0.1208	 0
house	das	0.25	0.25	0.1818	0.1313	 0
the	buch	0.25	0.25	0.1818	0.1208	 0
book	buch	0.25	0.5	0.6364	0.7479	 1
a	buch	0.25	0.25	0.1818	0.1313	 0
book	ein	0.25	0.5	0.4286	0.3466	 0
a	ein	0.25	0.5	0.5714	0.6534	 1
the	haus	0.25	0.5	0.4286	0.3466	 0
house	haus	0.25	0.5	0.5714	0.6534	 1

Problems with IBM Model 1

fertility

NULL insertion

lexical translation

distortion

IBM Model 2

fertility

NULL insertion

lexical translation

monotonic alignment

IBM Model 2

$$p(\mathbf{e}, \mathbf{a}|\mathbf{f}) = \epsilon \prod_{j=1}^{l_e} t(e_j | f_{a(j)}) a(a(j)|j, l_e, l_f)$$

$$p(\mathbf{e}|\mathbf{f}) = \epsilon \prod_{j=1}^{l_e} \sum_{i=0}^{l_f} t(e_j | f_{a(j)}) a(a(j)|j, l_e, l_f)$$

compare with Model 1:

$$p(\mathbf{e}, a|\mathbf{f}) = \frac{\epsilon}{(l_f + 1)^{l_e}} \prod_{j=1}^{l_e} t(e_j|f_{a(j)})$$

Higher IBM Models

IBM Model 1	lexical translation
IBM Model 2	adds absolute reordering model
IBM Model 3	adds fertility model
IBM Model 4	relative reordering model
IBM Model 5	fixes deficiency

Only IBM Model 1 has global maximum

training of a higher IBM model builds on previous model

Computationally biggest change in Model 3

- trick to simplify estimation does not work anymore
- → exhaustive count collection becomes computationally too expensive
- sampling over high probability alignments is used instead

The IBM Models 1--5 (Brown et al. 93)

[from Al-Onaizan and Knight, 1998]

Word Alignment

Given a sentence pair, which words correspond to each other?

Word Alignment?

Is the English word does aligned to the German wohnt (verb) or nicht (negation) or neither?

Word Alignment?

How do the idioms kicked the bucket and biss ins grass match up? Outside this exceptional context, bucket is never a good translation for grass

Word Alignment and IBM Models

- IBM Models create a many-to-one mapping
 - words are aligned using an alignment function
 - a function may return the same value for different input (one-to-many mapping)
 - a function can not return multiple values for one input (no many-to-one mapping)
- Real word alignments have many-to-many mappings

Symmetrization

english to spanish

spanish to english

Growing Heuristics

black: intersection

grey: additional points in union

- Add alignment points from union based on heuristics
- Popular method: grow-diag-final-and

Evaluating Alignment Models

- How do we measure quality of a word-to-word model?
 - Method 1: use in an end-to-end translation system
 - Hard to measure translation quality
 - Option: human judges
 - Option: reference translations (NIST, BLEU)
 - Option: combinations (HTER)
 - Actually, no one uses word-to-word models alone as TMs
 - Method 2: measure quality of the alignments produced
 - Easy to measure
 - Hard to know what the gold alignments should be
 - Often does not correlate well with translation quality (like perplexity in LMs)

Sure links S

$$\operatorname{Precision}(A, P) = \frac{|P \cap A|}{|A|}$$

$$\operatorname{Recall}(A, S) = \frac{|S \cap A|}{|S|}$$

Sure links

$$\operatorname{Precision}(A, P) = \frac{|P \cap A|}{|A|} \qquad \operatorname{Recall}(A, S) = \frac{|S \cap A|}{|S|}$$

$$\operatorname{Recall}(A, S) = \frac{|S \cap A|}{|S|}$$

$$AER(A, P, S) = 1 - \frac{|S \cap A| + |P \cap A|}{|S| + |A|}$$

Problems with Lexical Translation

- Complexity -- exponential in sentence length
- Weak reordering -- the output is not fluent
- Many local decisions -- error propagation

in this respect

Phrase-Based Translation

В	этом	смысле	подобные	действия	частично	дискредитируют	систему	американской	демократии
in	this	sense	such	actions	some	discredit	system	american	democracy
the	that	meaning	similar	action	partially		a system	u.s.	democracies
a	the	terms	these	the	part		systems	us	democratic
at	it	way	this	acts	in part		which	america	of democracy
	here	sense,	like	steps	partly		network	america's	
this		these ac	tions				american de	mocracy	
in this sense		ense						america's de	emocracy
in that sense							us demo	ocracy	
	Hala a								

$$P(e, alignment | f) = p_{segmentation} p_{translation} p_{reorderings}$$

Phrase-Based MT

Translation Model P(f|e)

source	target	translation
phrase	phrase	features

Monolingual corpus

Language Model P(e) –

Held-out parallel corpus

Reranking Model

feature weights

 $argmax_e P(f|e)P(e)$