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MT is Hard

Ambiguities

▪ words
▪ morphology
▪ syntax
▪ semantics
▪ pragmatics



Levels of Transfer



Two Views of Statistical MT

▪ Direct modeling (aka pattern matching)
▪ I have really good learning algorithms and a bunch of example 

inputs (source language sentences) and outputs (target language 
translations)

▪ Code breaking (aka the noisy channel, Bayes rule)
▪ I know the target language 
▪ I have example translations texts (example enciphered data)



MT as Direct Modeling

▪ one model does everything
▪ trained to reproduce a corpus of translations



Noisy Channel Model 



Which is better?

▪ Noisy channel -
▪ easy to use monolingual target language data
▪ search happens under a product of two models (individual models 

can be simple, product can be powerful)
▪ obtaining probabilities requires renormalizing

▪ Direct model -
▪ directly model the process you care about
▪ model must be very powerful



Centauri-Arcturan Parallel Text



Noisy Channel Model : Phrase-Based MT
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Phrase-Based MT
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Phrase-Based Translation



Phrase-Based System Overview

Sentence-aligned 
corpus

cat ||| chat ||| 0.9 
the cat ||| le chat ||| 0.8
dog ||| chien ||| 0.8 
house ||| maison ||| 0.6 
my house ||| ma maison ||| 0.9
language ||| langue ||| 0.9 
…

Phrase table
(translation model)Word alignments



Lexical Translation

▪ How do we translate a word? Look it up in the dictionary

Haus — house, building, home, household, shell

▪ Multiple translations
▪ some more frequent than others
▪ different word senses, different registers, different inflections (?)
▪ house, home are common

▪ shell is specialized (the Haus of a snail is a shell)



How common is each?

Look at a parallel corpus (German text along with English 
translation)



Estimate Translation Probabilities

Maximum likelihood estimation



▪ Goal: a model
▪ where e and f are complete English and Foreign sentences 

Lexical Translation



 Alignment Function

▪ In a parallel text (or when we translate), we align words in one 
language with the words in the other

▪ Alignments are represented as vectors of positions:



▪ Formalizing alignment with an alignment function

▪ Mapping an English target word at position i to a German 
source word at position j with a function a : i → j

▪ Example

Alignment Function 



Reordering

▪ Words may be reordered during translation.



One-to-many Translation

▪ A source word may translate into more than one target word
▪



Word Dropping

▪ A source word may not be translated at all



Word Insertion

▪ Words may be inserted during translation 
▪ English just does not have an equivalent
▪ But it must be explained - we typically assume every source 

sentence contains a NULL token



Many-to-one Translation

▪ More than one source word may not translate as a unit in 
lexical translation



Mary did not slap the green witch

?

Generative Story



Generative Story
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The IBM Models 1--5 (Brown et al. 93)
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Alignment Models

▪ IBM Model 1: lexical translation
▪ IBM Model 2: alignment model, global monotonicity
▪ HMM model: local monotonicity 
▪ fastalign: efficient reparametrization of Model 2
▪ IBM Model 3: fertility
▪ IBM Model 4: relative alignment model
▪ IBM Model 5: deficiency
▪ +many more
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IBM Model 1

▪ Generative model: break up translation process into smaller 
steps

▪ Simplest possible lexical translation model
▪ Additional assumptions
▪ All alignment decisions are independent
▪ The alignment distribution for each a

i 
is uniform over all source 

words and NULL



IBM Model 1

▪ Translation probability
▪ for a foreign sentence f = (f

1
, ..., f

lf
 ) of length l

f
 

▪ to an English sentence e = (e
1
, ..., e

le
 ) of length l

e
 

▪ with an alignment of each English word e
j
 to a foreign word f

i
 

according to the alignment function a : j → i

▪ parameter ϵ is a normalization constant



Example



Learning Lexical Translation Models

We would like to estimate the lexical translation probabilities 
t(e|f) from a parallel corpus

▪ ... but we do not have the alignments

▪ Chicken and egg problem
▪  if we had the alignments,

→ we could estimate the parameters of our generative model 
(MLE)

▪ if we had the parameters,

→ we could estimate the alignments



EM Algorithm

▪  Incomplete data
▪ if we had complete data, would could estimate the model
▪  if we had the model, we could fill in the gaps in the data

▪ Expectation Maximization (EM) in a nutshell

1. initialize model parameters (e.g. uniform, random) 

2. assign probabilities to the missing data 

3. estimate model parameters from completed data 

4. iterate steps 2–3 until convergence



EM Algorithm

▪ Initial step: all alignments equally likely
▪ Model learns that, e.g., la is often aligned with the



EM Algorithm

▪ After one iteration
▪ Alignments, e.g., between la and the are more likely



EM Algorithm

▪ After another iteration
▪ It becomes apparent that alignments, e.g., between fleur and 

flower are more likely (pigeon hole principle)



EM Algorithm

▪ Convergence
▪ Inherent hidden structure revealed by EM



EM Algorithm

▪ Parameter estimation from the aligned corpus



IBM Model 1 and EM

EM Algorithm consists of two steps

▪ Expectation-Step: Apply model to the data
▪ parts of the model are hidden (here: alignments)
▪ using the model, assign probabilities to possible values

▪ Maximization-Step: Estimate model from data
▪ take assigned values as fact
▪ collect counts (weighted by lexical translation probabilities)
▪ estimate model from counts

▪ Iterate these steps until convergence



IBM Model 1 and EM 

▪ We need to be able to compute:
▪ Expectation-Step: probability of alignments
▪ Maximization-Step: count collection



IBM Model 1 and EM

t-table



IBM Model 1 and EM
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IBM Model 1 and EM

t-table



IBM Model 1 and EM

Applying the chain rule:

t-table



IBM Model 1 and EM: Expectation Step



IBM Model 1 and EM: Expectation Step



The Trick



IBM Model 1 and EM: Expectation Step



IBM Model 1 and EM: Expectation Step
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IBM Model 1 and EM: Maximization Step



IBM Model 1 and EM: Maximization Step
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IBM Model 1 and EM: Maximization Step



IBM Model 1 and EM: Maximization Step

Update t-table:

p(the|la) = c(the|la)/c(la)
 

E-step

M-step

t-table



IBM Model 1 and EM: Pseudocode



Convergence



Problems with IBM Model 1
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IBM Model 2
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IBM Model 2

▪ compare with Model 1: 



Higher IBM Models



The IBM Models 1--5 (Brown et al. 93)
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Word Alignment



Word Alignment?



Word Alignment?



Word Alignment and IBM Models

▪ IBM Models create a many-to-one mapping
▪ words are aligned using an alignment function
▪ a function may return the same value for different input 

(one-to-many mapping)
▪ a function can not return multiple values for one input (no 

many-to-one mapping)

▪ Real word alignments have many-to-many mappings



Symmetrization



Growing Heuristics

▪ Add alignment points from union based on heuristics
▪ Popular method: grow-diag-final-and



Evaluating Alignment Models

▪ How do we measure quality of a word-to-word model?

▪ Method 1: use in an end-to-end translation system
▪ Hard to measure translation quality
▪ Option: human judges
▪ Option: reference translations (NIST, BLEU)
▪ Option: combinations (HTER)
▪ Actually, no one uses word-to-word models alone as TMs

▪ Method 2: measure quality of the alignments produced
▪ Easy to measure
▪ Hard to know what the gold alignments should be
▪ Often does not correlate well with translation quality (like perplexity in LMs)



Alignment Error Rate



Alignment Error Rate
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Alignment Error Rate



Alignment Error Rate



Problems with Lexical Translation

▪ Complexity -- exponential in sentence length
▪ Weak reordering -- the output is not fluent
▪ Many local decisions -- error propagation



Phrase-Based Translation

P(e, alignment|f) = p
segmentation

p
translation

p
reorderings
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